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A distinct propagation of solitary waves in the presence of autocatalysis, diffusion, and symmetry-breaking
�differential� advection, is being studied. These pulses emerge at lower reaction rates of the autocatalytic
activator, i.e., when the advective flow overcomes the fast excitation and induces a fluid type “drifting”
behavior, making the phenomenon unique to reaction-diffusion-advection class systems. Using the spatial
dynamics analysis of a canonical model, we present the properties and the organization of such drifting pulses.
The insights underly a general understanding of localized transport in simple reaction-diffusion-advection
models and thus provide a background to potential chemical and biological applications.
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Solitary waves are prominent generic solutions to
reaction-diffusion �RD� systems and basic to many applied
science disciplines �1�. In one physical space dimension,
these spatially localized propagating pulses are qualitatively
described by a fast excitation �leading front� from a rest state
followed by a slow recovery �rear front� to the same uniform
state �1�. Thus, in isotropic RD media a single symmetric
suprathreshold localized perturbation results in simulta-
neously counterpropagating pulses or wave trains �2�.

However, in chemical and biological media transport can
be facilitated by both diffusion and advection, and thus ex-
citation properties of solitary waves can be subjected to lin-
ear and nonlinear convective instabilities �3�. Several experi-
ments in a spatially quasi-one-dimensional Belousov-
Zhabotinsky chemical reaction have shown �along with
numerical simulations� that excitable pulses propagate
against the advective flow �4,5� and can propagate bidirec-
tionally after splitting due to the “antirefractory” phenom-
enon, triggered by the imposed electrical field �4�. In the
latter case, the up- and down-stream traveling pulses retain
the standard RD property of propagation by a fast excitation
in the leading front. Consequently, the theoretical founda-
tions of traveling and/or propagation failure of solitary
waves in differential reaction-diffusion-advection �RDA�
media, inherited the intuition of RD systems �6�.

In this Rapid Communication we analyze an RDA model
and demonstrate a distinct solitary wave phenomenon that
cannot emerge in RD systems: under certain conditions soli-
tary waves may drift; i.e., the slow recovery becomes a lead-
ing front �see Fig. 1�. We reveal the regions and the proper-
ties of such drifting pulses and show that the phenomenon
underlies a competition between a local kinetics of the acti-
vator and a differential advection. Our methods include a
bifurcation theory of coexisting spatial solutions �linear
analysis and numerical continuations� coupled to temporal
stability; all the results agree well with direct numerical in-
tegrations. Applicability to chemical and biological media is
also discussed.

We start with a canonical RDA model that incorporates
local kinetics of activator v�x , t� and inhibitor u�x , t� type,

ut + ux = Da f�u,v� − u ,

Le vt + vx = B Da f�u,v� − �v + Pe−1 vxx. �1�

This is a general RDA model of membrane �or cross flow�
reactor �7� that describes two species reacting at a rate f�u ,v�
in which reactants are supplied and products are removed at
a rate of u and �v for the two species, respectively. In the
present case we choose the simple exothermic reaction de-
scribed by Arrhenius kinetics. The latter is used for many
reactor design problems, for understanding instabilities, ex-
plosions and cool flames �8�. In that case v is dimensionless
temperature and f�u ,v���1−u�exp��v / ��+v�� �9�.

Equation �1� admits uniform rest states �u ,v�= �u0 ,v0
�Bu0 /��, where u0 obtained via Da=u0�1−u0�−1 exp�
−�u0 / ��� /B+u0��. In what follows, we set Pe=15, �=4,
�=10 000, and use Le, Da, and B as control parameters al-
lowed to vary; details regarding the parameters are given in
�10�. A standard linear stability analysis to spatially periodic
perturbations �using Eq. �1��, shows that the uniform states
may loose stability to two finite wavenumber Hopf instabili-
ties, Da�, that emerge from �BW ,DaW�, as shown in Fig. 1;
the instabilities are of an asymmetric drifting type, i.e., in
direction of advection. While the region Da−�Da�Da+ is
linearly unstable, under certain conditions stationary periodic
�SP� solutions may also develop �see dotted line in Fig. 1�.
For more details about these instabilities and the effect of
boundary conditions we refer the reader to �10�. Here, our
interest is in the effect of a differential advection �Le� and the
local kinetics �B ,Da� on the organization of solitary waves.
We also consider large domains in which pulse properties is
not determined by the type of boundary conditions �periodic,
no flux, or Robin� nor we interested in the regimes in which
nonuniform steady-state patterns may form.

To reveal the propagation properties and the regimes of
solitary waves �see Fig. 1�, we look at the steady-state ver-
sion of Eq. �1� in a traveling �comoving� coordinate,
�=x−ct,

u� = �Da f�u,v� − u�/�1 − c�, v� = w ,

w� = Pe��1 − c Le�w − B Da f�u,v� + �v� . �2�

Using Eq. �2�, the existence of nonuniform states can be
analyzed via spatial dynamics methods, i.e., where space is
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viewed as a timelike variable. Thus, solitary waves �in the
context of Eq. �1�� become in Eq. �2� asymmetric homoclinic
orbits �HOs� and TW� �which will be also discussed� corre-
spond to periodic orbits undergoing Hopf bifurcations at Da�

�with a proper c� �10�. In the following all these solutions
will be computed numerically using a continuation package
AUTO �11�, where the speed c is obtained as a nonlinear
eigenvalue problem.

From physicochemical reasoning, the drifting pulses are
expected at low reaction-rate regimes of the activator, repre-
sented in Eq. �1� by low dimensionless rate constant �Da�
and low exothermocity �B�. Under such conditions the exci-
tation of nearest neighbors is suppressed due to the advective
flow, hereafter, the drifting pulse is no longer excitable since
the leading front now develops from the rest state as a small
amplitude perturbation. These spatially slow deviations from
the rest state are enhanced and propagate from x=0 to x=L,
due to the convective instability �3�.

In Fig. 2�a�, we present the branches of HOs at Da=Da�

�0.155 �a horizontal cut in top panel in Fig. 1�, resulting via
a simultaneous variation of �B ,c�. B=B��8.76 identifies a
fold, where the stable branch corresponds to large amplitude
HOs �see top inset�. Indeed the drifting pulses exist for B�

�B�B0�10.35, and have similar profiles along the stable
branch as the standard excitable pulses �see bottom inset�.
Namely, drifting pulses propagate in the direction of the ad-
vection �downstream, c�0� where the leading region is now
the slow recovery that was the trailing tail above B=B0 for
excitable �upstream, c�0� pulses, as shown in the bottom
inset in Fig. 2�a�. This is qualitatively different from a typical
RD behavior where the pulses always propagate with a fast
excitation at the leading front �1,6�.

The above scenario changes once the differential advec-
tion is eliminated �Le=1� so that the typical RD behavior is
restored. While the c=0 line for Le=1, in the �B ,Da� plane
does not change, we show in Fig. 2�b� that near the fold only
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FIG. 1. �Color online� Top panel: regions of excitable �thick
dashed line� and drifting �thin dashed line� solitary waves �pulses�
in a parameter space �B ,Da� at Le=100; the thin dashed line im-
plies zero velocity of a pulse. The solid line marks the onsets of
finite wavenumber instabilities of traveling waves, TW�. The dot-
ted line marks the criterion for stationary patterns �SP� solutions
�see text for details�. The ���, marks the leftmost limits of ho-
moclinic orbits �B� ,Da����8.76,0.155� and asymmetric finite
wavenumber Hopf bifurcation �BW ,DaW���10,0.36� while ���
marks the leftmost limit of excitable pulses �B0 ,Da��
��10.35,0.155�. Bottom panel: space-time plots at B=10.6 and �a�
Da=0.24, �b� Da=0.15, and �c� Da=0.08. The plots show v�x , t�
resulting from integration of Eq. �1� with no-flux boundary condi-
tions, where x� �0,10� and t� �0,2265�; we used a top-hat initial
condition embedded in �u0 ,v0� at the respective Da values.
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FIG. 2. �Color online� Bifurcation diagrams showing the
branches of homoclinic solutions as a function of B at
Da��0.155, Le=100 �a�, and Le=1 �b�. The branches are plotted in
terms of the propagation speed and the maximal value of v��� �top
inset in �a��; solid lines indicate linear stability. Bottom insets show
profiles of v��� at the locations marked by ���. The arrows in �a�
indicate the propagation direction in the context of Eq. �1�; in �b�
the propagation is to the left. The branches were obtained via inte-
gration of Eq. �2� while the stable portions of each branch coincide
with solutions obtained by integration of Eq. �1�; the periodic do-
main is L=24 �larger domains yield identical results�.
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a negative velocity region forms, i.e., standard excitable
pulses are being restored. Importantly, since solitary waves
are “large” amplitude solutions �corresponding to the bottom
branch�, stability of the pulses does not play a qualitative
role, i.e., due to the negative speed at the fold drifting pulses
cannot emerge even when stabilized.

Since HOs arise in global bifurcations �15�, we wish to
uncover other type of stable coexisting solutions that may
emerge in their vicinity.

As demonstrated by the monotonic and nonmonotonic
dispersion relations in Fig. 3, drifting pulses appear to inherit

the properties of excitable pulses. The latter are important
characteristics of organization and interaction of solitary
waves �13�, and are distinguished here around B=Bb�9.1, a
so-called Belyakov point �14�. At this point and with an ap-
propriate speed, the spatial eigenvalues �of Eq. �2�� corre-
spond to one positive real �associated with �→−�� and a
degenerate pair of negative reals �associated with �→��.
Below Bb, the degeneracy is removed but the eigenvalues
remain negative reals �a saddle� while above Bb they become
complex conjugated corresponding to a saddle focus �a
Shil’nikov-type HOs �2,15,16��, marked by �� � in top panel
in Fig. 3. Importantly, such an interchange of eigenvalues
implies a transition from monotonic to oscillatory dispersion
relation �Fig. 3� and a monotonic �in space� approach of the
HOs to the fixed point as �→ ��, which implies coexist-
ence of bounded-pulse states for B�Bb �13�.
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FIG. 3. �Color online� Top panel: schematic representation of
typical eigenvalue configurations about the uniform state �u0 ,v0 ,0�
corresponding to a saddle if B�Bb and a saddle focus if B�Bb,
where Bb�9.1 is the Belyakov point. Bottom panel: Typical disper-
sion relations that are associated with the respective eigenvalues,
computed from the stable �drifting type� homoclinic orbits as a
starting point. Parameters as in Fig. 2�a�.
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FIG. 4. �Color online� Bifurcation diagram showing the
branches of traveling waves �TW−� as a function of B in terms of
speed and the maximal value of v��� �in the inset�. The branches are
continued from Hopf instabilities: �B ,Da−���10.4,0.29� �left line�
and �10.2,0.29�, where �kc ,c���3.2,0.0054� and �3.355,0.0053�,
respectively. Solid lines imply linear stability �12�, while ��� marks
the respective onsets of the Hopf bifurcation to TW−. Integration
details as in Fig. 2�a� but on L=2	 /kc.
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FIG. 5. �Color online� Bifurcation diagram showing the
branches of uniform states �u0 ,v0�, homoclinic orbits �HOs�, and
traveling waves �TW�� as a function of Da in terms of the maximal
value of v��� at �a� B=10.4 and �b� B=9.6. Solid lines imply linear
stability, including stability of TW� �12�, while Da� mark the onset
Hopf bifurcations to TW�, respectively. The top inset represents the
nonuniform states in terms of speed where the large �small� isola in
�b� corresponds to the TW− family emerging from Da− at B=10.4
�B=10.2�. The bottom insets show HO profiles at locations marked
by ���; in �a� the two dots mark also the two ends of the single
pulse solitary wave branch. Integration details as in Fig. 2�a� but on
distinct periodic domains.
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It is known that organization of HO can be accompanied
by periodic solutions �2,16�. Here the dispersion relations
obtained at B�BW �Fig. 3�, indeed imply existence of peri-
odic orbits although the uniform state is linearly stable.
These periodic solutions are in fact TW− that bifurcate sub-
critically from the locus of points Da=Da− for B�BW �with
distinct critical wavenumbers and speeds obtained from the
linear analysis of Eq. �1��, as shown by two sample curves in
Fig. 4. Notably, there are an infinite number of such TW−

families. Unlike the HO, on large domains stability of TW−

solutions does depend on domain size �12�.
The organization of all drifting nonuniform solutions can

be understood by varying Da at two representative B values.
Figure 5�a�, shows the bifurcation diagram of nonuniform
solutions and their propagation speed at B=10.4. The single
pulse HO branch ends at the two rightmost ends �marked by
dots�, at which the profiles take the form of homoclinic tails
�see bottom inset� �16�. Due to the proximity to the subcriti-
cal Hopf onset at Da−, the two rightmost ends ever approach
each other as domain �L� is increased, and consequently, they
inherit the propagation direction of the top and the bottom
branches of TW− as discussed in �10�. As B is decreased
below BW the HOs and the TW− solutions organize in isolas
and parts of their stability regions overlap �Fig. 5�b��, imply-
ing sensitivity to initial perturbations. Note that the oscilla-
tions of the right tail in the profile had decreased �see bottom
inset�, which is consistent with the approach toward the Be-
lyakov point �B=Bb�.

We have showed that solitary waves can propagate bidi-
rectionally without changing their profile, due to the compe-
tition between activator autocatalysis and the symmetry-
breaking advection. Thus, we distinguish between excitable

�upstream� and drifting �downstream� propagations. The
drifting pulses are triggered by a convective instability �3�, in
two ways: �i� suppression of the excitation at the fast ��→
−�� front and �ii� enhancement of weak deviations at the
slow ��→�� front. As such, this is a distinct fluid type be-
havior that results in systems of an RDA class and cannot
emerge in RD systems. Throughout a bifurcation analysis of
spatially extended steady states arising in a canonical RDA
model, we revealed the properties and the organization of
such drifting pulses. Since the results center on homoclinic
orbits which are known to act as organizing centers of spatial
solutions, qualitative applicability to systems with other
properties is naturally anticipated.

Although only excitable type solitary waves have been
observed experimentally in an autocatalytic RDA system
�4,5�, chemical media are the most natural setups to confirm
our predictions and to explore technological directions.
Moreover, theoretical insights explored here can be exploited
to spatiotemporal study of biological systems that constitute
diffusive and advective transports, examples include self-
organized mobility of intracellular molecular aggregates �or-
ganelles� in eucaryotic cells �17� and vegetation patterns
�18�.
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